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Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles
for the two faces. In this case, to linear order, the energy loss depends only on the position in the
direction of the face tilt, and is independent of the incoming angle. One can instead construct an
absorber with entrance and exit faces facing rather general directions. In this case, the energy loss
can depend on both the position and the angle of the particle in question. This paper demonstrates
that and computes the effect to linear order.

I. INTRODUCTION

Ionization cooling can be achieved in the transverse di-
rection with a straight cooling channel. However, in the
longitudinal direction, one at best gets very slow cool-
ing, and in most cases actually gets heating. In addi-
tion, energy straggling leads to further heating in the
longitudinal plane. To achieve 6-D cooling, one must
couple the transverse motion with longitudinal motion.
One method to achieve this is to use a triangular cross-
section absorber in a location with dispersion. Particles
with higher energy then go through a larger length of
absorber and lose more energy, thus reducing the energy
spread. Unfortunately, this occurs at the cost of an in-
crease in transverse beam size [1]. This process is often
referred to as “emittance exchange.”

Existing computations have only considered triangular
wedges with equal face tilts. The entrance and exit faces
of the absorber can be tilted rather generally. This will
give an energy loss dependence on transverse coordinates
which is different from what occurs when the face tilts
are equal and in the same plane. This paper calculates
the linear transfer matrix for such a wedge absorber, for
use in theoretical calculations.

First, the path length in the absorber is calculated for
general face angles. The computation is first done in the
case where the faces are tilted in the same plane, to give
a more intuitive picture of what is going on, followed by
formulas for more general face tilts. This calculation is
then used to find the transfer matrix through the ab-
sorber. Finally, possible uses of more general face angles
are discussed, in particular the case where the faces are
parallel but tilted.

II. GEOMETRIC LENGTH CALCULATION

The energy loss (ignoring stochastic effects) in the ab-
sorber is proportional to the distance that the particle
travels through the absorber. Thus, to calculate the ef-
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FIG. 1: Planar absorber geometry, showing relevant param-
eters. x is the displacement of the orbit from the reference
axis at the center of the absorber, and η is the angle that the
incoming particle makes with the reference axis.

fect of the absorber, we will simply calculate the length
of the particle trajectory that is inside the absorber. We
further assume that the particle trajectory is straight:
i.e., there are no electromagnetic fields acting on the par-
ticle. First, we compute a case where the plane in which
the absorber faces are tilted from vertical is the same for
both cases. This becomes a one-dimensional problem,
and helps give an understanding of what is going on. We
then do the computation for a more general case.

A. One Dimension

For one dimension we can do the calculation in a plane.
Fig. 1 is a diagram giving the relevant parameters. The
exact expression for the length of the path inside the
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absorber is

l =

(
L

tan θ0 + tan θ1
+ x

)
cos η sin(θ0 + θ1)

cos(η − θ0) cos(η + θ1)
, (1)

where L = z1 + z2. To linear order in x and η, this is

l = L+ x(tan θ0 + tan θ1) + ηL(tan θ1 − tan θ0) (2)

If θ0 = θ1 (i.e., the absorber cross-section is an isosceles
triangle), to linear order, the path length (and thus the
energy loss) does not depend on the incoming particle
angle, but does depend on the transverse position. This
is the situation that has been analyzed in the past. On
the other hand, if θ0 = −θ1 (i.e., the faces are parallel but
the absorber is tilted), the path length does not depend
on the incoming particle position, but it does depend on
the incoming particle angle. Note that Eq. (1) cannot
be evaluated at θ0 = −θ1 = θ; one must take the limit,
which exists and is

L
cos η cos2 θ

cos2(η − θ) (3)

B. General Geometry

In the more general situation, we describe the absorber
by its entrance and exit planes. We describe these planes
as passing through a point pi and having a unit normal
ui, where i = 0 for the entrance plane and i = 1 for the
exit plane. The particle trajectory is described as line
passing through a point x0 with a unit tangent vector t.
We can calculate the path length within the absorber in
terms of these coordinates and vectors as

l =
(p1 − x0) · u1

t · u1
− (p0 − x0) · u0

t · u0
(4)

We can compute this length to linear order. It is useful
at this point to represent the aforementioned vectors and
points in terms of coordinates:

x0 = (x, y, 0) (5)

t =


px
p
,
py
p
,

√
p2 − p2

x − p2
y

p


 (6)

p0 = (0, 0,−z0) (7)

p1 = (0, 0, z1) (8)

u0 = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0) (9)

u1 = (− sin θ1 cosφ1,− sin θ1 sinφ1, cos θ1). (10)

These values have been chosen to match the values in
Fig. 1. In terms of these, the path length to linear order

in the transverse variables is

l = z0 + z1 + x(tan θ0 cosφ0 + tan θ1 cosφ1)

+ y(tan θ0 sinφ0 + tan θ1 sinφ1)

+
px
p

(z1 tan θ1 cosφ1 − z0 tan θ0 cosφ0)

+
py
p

(z1 tan θ1 sinφ1 − z0 tan θ0 sinφ0). (11)

Note that in contrast with Eq. (3), this equation does
not depend only in L = z0 + z1. This is because for the
planar case, it was possible to choose a single longitudinal
position corresponding to the point at which the entrance
and exit planes meet (therefore specifying all of θ0, θ1,
z0, and z1 is redundant). That is not possible in general,
and thus we must keep z1 and z2 separate.

III. TRANSFER MATRIX

One can easily compute the transfer matrix to lowest
order in the relative energy loss in the absorber. In this
case, only the path length in the absorber matters. First,
compute the evolution of the transverse momenta, as well
as the evolution of the energy deviation ignoring the face
angles. The equations of motion are

dp⊥
ds

= −κ⊥p⊥
dδ

ds
= −κ‖δ (12)

κ⊥ =
1

βpc

dE

dx
κ‖ =

d

dE

(
dE

dx

)
, (13)

and their solution is

p⊥(s) = p⊥(s0)e−κ⊥(s−s0) (14)

δ(s) = δ(s0)e−κ‖(s−s0). (15)

The change in δ due to the pole faces can be computed
from Eq. (11) to be

∆δ = κ⊥

[
x(tan θ0 cosφ0 + tan θ1 cosφ1)

+ y(tan θ0 sinφ0 + tan θ1 sinφ1)

+
px
p

(z1 tan θ1 cosφ1 − z0 tan θ0 cosφ0)

+
py
p

(z1 tan θ1 sinφ1 − z0 tan θ0 sinφ0)

]
. (16)

The matrix elements can be read off from the above equa-
tions. In a theoretical treatment, this matrix element
can be treated as having zero length, thus ignoring the
drift. This is because the particle trajectory angles do
not change due to the energy loss. Also remember that
the effects of fields in the absorbers are ignored.

This calculation ignores the evolution of the transverse
momenta as given in Eq. (14), which will result in a small
relative error of order κ⊥L. One can do the correct cal-
culation, at least in one dimension. Take z to be the
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position along the reference axis and θ the angle of the
plane with respect to vertical. There is a relationship
between these: z = y tan θ where y is a constant. Then

dl =

(
1 +

x

y
+ 2

pxz

py

)
dz (17)

is the infinitesimal length change. One can use Eq. (14)
in this equation, giving

dl

dz
= 1 +

x

y
+ 2

px0

py
ze−κ⊥(z+z0). (18)

Integrating this, one gets

l = L+
xL

y

+ 2
px0

py

[
1

κ2
⊥

(1− e−κ⊥L)− z1

κ⊥
e−κ⊥L − z0

κ⊥

]
(19)

This can be rewritten in terms of angles and L as

l = L+ x(tan θ0 + tan θ1)

+ 2
px
pκ⊥

[
(tan θ0 + tan θ1)

1− e−κ⊥L
κ⊥L

− tan θ1e
−κ⊥L − tan θ0

]
(20)

Doing this in the general case is more difficult, but re-
sults in an equally simple answer. We need to imagine
a sequence of planes with normal u and passing through
the point (0, 0, z). To linear order in x = (x, y) and
p⊥/p (where the ⊥ subscript refers to the transverse co-
ordinates), the integrated path length to the plane at z
is a constant plus

z − x · u⊥
uz
− zp⊥

p
· u⊥
uz

. (21)

We will parameterize u by η according to

u =
u0 sin(ξ − η) + u1 sin η

sin η
u0 · u1 = cos ξ. (22)

η will vary from 0 to ξ while z varies from −z0 to z1. The
definition of the exact relationship between them will be
left to later. We then have

dl

dz
= 1− p⊥

p
· u⊥
uz

−
(
x+ z

p⊥
p

)
· uz0u⊥1 − uz1u⊥0

u2
z sin ξ

dη

dz
. (23)

Now define

dη

dz
= ku2

z (24)

for some constant k. Then

d

dz

(
u⊥
uz

)
= k

uz0u⊥1 − uz1u⊥0

sin ξ
(25)

meaning that

u⊥
uz

= k
uz0u⊥1 − uz1u⊥0

sin ξ
+ c (26)

for a constant vector c. Applying the known boundary
conditions,

u⊥
uz

=
u⊥0

uz0

z1 − z
L

+
u⊥1

uz1

z + z0

L
. (27)

We can then write

dl

dz
= 1− x

L
·
(
u⊥1

uz1
− u⊥0

uz0

)

− p⊥
p
·
[
z1u⊥0

Luz0
+
z0u⊥1

Luz1
+

2z

L

(
u⊥1

uz1
− u⊥0

uz0

)]
(28)

Now, use Eq. (14), giving

l = L− x ·
(
u⊥1

uz1
− u⊥0

uz0

)
− p⊥0

pκ⊥L
·
[

2

(
1− e−κ⊥L

κ⊥
− z0 − z1e

−κ⊥L
)(

u⊥1

uz1
− u⊥0

uz0

)

+

(
z1u⊥0

uz0
+
z0u⊥1

uz1

)
(1− e−κ⊥L)

]
. (29)

The change in δ is simply κ⊥l, and one can then directly
read off the matrix elements.

IV. DISCUSSION

One can now ask the question of why this is interest-
ing. The simplest point is that adjusting the absorber
geometry simply to keep the sum of the tangents of the
face angles constant is not sufficient to maintain identical
performance of a cooling channel, unless there happens to
be no angular dispersion at the location of the absorber.
In fact, at a point where there is both angular and posi-
tional dispersion, one can potentially get improved per-
formance out of a given absorber by adjusting the face
angles separately.

One could even consider a lattice with only angular
dispersion and no positional dispersion at the absorbers.
This could not be easily done in a ring (if one bends
in the same direction all the time, one tends to have
nonzero positional dispersion), but could be done in a
“snaking” configuration where subsequent cells bend in
opposite directions, and thus the lattice is straight over
larger scales.

There are several reasons one might want to do this.
First of all, a lattice that does not form a ring allows one
to adiabatically vary lattice parameters, thus maximiz-
ing the cooling performance as the beam changes. One
may be especially interested in doing this for a collider to
maximize the luminosity one achieves. In addition, one
avoids the difficulties with injection and extraction.
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FIG. 2: Super-FOFO lattice with bends all in same direction
and isosceles wedges. Absolute value of eigenvalues plotted
versus field relative to a reference field. Particles on-axis lose
5% of their momentum in one absorber (without coupling,
the energy spread would increase by 0.85%). Bend radius
at reference field is 5 m (momentum of 200 MeV/c). Wedge
faces tilted vertically by 55◦. RF is 201.25 MHz, 50◦ off-crest,
3 MV/m.

These considerations apply to any lattice that does not
form a ring. The advantage of having only angular dis-
persion versus positional dispersion at the absorber may
lie in the effect of energy straggling. When the energy
changes in energy straggling, the betatron amplitude will
change since the closed orbit changes. Since the beta
function at the absorber is small (whereas the dispersion
is not necessarily), energy straggling with positional dis-
persion will lead to large betatron amplitude changes rel-
ative to the beam size, since the beam size is small due to
the small beta function. However, if instead there is an-
gular dispersion at the absorber, energy straggling leads
to smaller relative betatron amplitude changes due to the
large angular spread at that point. This has the potential
to substantially improve the performance of these cooling
lattices. This has not been tried out in real lattices at
this point, so this discussion is speculative.

A. Example

As an example, consider a “Super-FOFO” lattice [2],
modified by adding bending as in [3]. A similar lattice,
but with “RFOFO” cooling cells, has been proposed for
achieving 6-D cooling, and shows excellent performance
[4, 5]. Fig. 2 shows the absolute value of the eigenvalues
as a function of the field strengths for standard isosceles
wedges and a lattice where all bends bend in the same di-
rection (giving dispersion at the absorber). This is equiv-
alent to considering the dependence of the eigenvalues on
the reference momentum. If the absolute value of all the
eigenvalue is less than 1, then the beam will be cooled in
all planes. As one can see from that figure, one is able to
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FIG. 3: Super-FOFO lattice where bending in one cell is op-
posite to the bending in the next, and the absorbers are slabs
tilted horizontally by 75◦. Reference bend radius is 3.5 m.
Everything else as in Fig. 2.

achieve 6-D cooling over a rather large range of reference
momenta. One therefore can speculate that 6-D cool-
ing will occur over a fairly large longitudinal phase-space
volume.

Figure 3 shows the eigenvalues for a tilted slab in a
lattice that has angular dispersion at the absorber. Note
that in this case as well, one is able to achieve 6-D cooling
over a rather large range of reference momenta. Also note
that the wedge angles are steeper than those required for
the case with conventional wedge absorbers.

V. CONCLUSIONS

The energy loss in an absorber with generally placed
planar faces has been calculated to linear order in the
transverse coordinates. This allows one to calculate
eigenvalues for a cooling channel with these rather gen-
eral wedges. An example was constructed where a cooling
channel was constructed with angular dispersion at the
absorbers, and parallel-face tilted absorbers were used.
Linear performance (without multiple scattering) of that
cooling channel was shown to be comparable to that of a
channel constructed with more conventional wedges. It
can be speculated that such a channel has multiple scat-
tering performance that is better than a wedge-based 6-D
cooling channel.

Further work should incorporate general face orien-
tations into simulation codes such as ICOOL [6]. One
can then examine the cooling performance of real lat-
tices with absorbers with more generally placed faces.
One can also attempt to optimize proposed 6-D cooling
lattices by orienting absorber faces more generally.
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